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ABSTRACT
Determining the best set of optimizations to apply to a ker-
nel to be executed on the graphics processing unit (GPU)
is a challenging problem. There are large sets of possible
optimization configurations that can be applied, and many
applications have multiple kernels. Each kernel may require
a specific configuration to achieve the best performance, and
moving an application to new hardware often requires a new
optimization configuration for each kernel.

In this work, we apply optimizations to GPU code using
HMPP, a high-level directive-based language and source-to-
source compiler that can generate CUDA / OpenCL code.
However, programming with high-level languages may mean
a loss of performance compared to using low-level languages.
Our work shows that it is possible to improve the perfor-
mance of a high-level language by using auto-tuning. We
perform auto-tuning on a large optimization space on GPU
kernels, focusing on loop permutation, loop unrolling, tiling,
and specifying which loop(s) to parallelize, and show results
on convolution kernels, codes in the PolyBench suite, and an
implementation of belief propagation for stereo vision. The
results show that our auto-tuned HMPP-generated imple-
mentations are significantly faster than the default HMPP
implementation and can meet or exceed the performance of
manually coded CUDA / OpenCL implementations.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Program-
ming; D.1.3 [Programming Techniques]: Concurrent Pro-
gramming—Parallel Programming ; D.2.8 [Software Engi-
neering]: Metrics—complexity measures, performance mea-
sures

General Terms
Performance

Keywords
Auto-tuning, GPU, CUDA, OpenCL, Optimization, Belief
Propagation

1. INTRODUCTION
The utilization of parallel programming on architectures

such as the graphics processing unit (GPU) leads to sig-
nificant speedup over a sequential CPU implementations for
many algorithms. In particular, there is a large body of work
utilizing NVIDIA’s CUDA architecture to obtain a speed-up

using GPUs, e.g., audio/video processing, medical imaging,
and black hole simulation [18].

In order to achieve the best performance possible, we
may need to use particular code transformations, such as
loop tiling and unrolling, permutation, and fusion / fission.
However, constant tweaking is required to determine which
transformations give the best performance, and the code re-
sulting from these transformations is brittle. A kernel may
be optimized for the current architecture, but the same code
might give poor performance on a different architecture.

In this paper, we use HMPPWorkbench, a directive-based
compilation framework targeted to GPUs. The tool allows
us to insert pragmas to transform sequential code and gen-
erate CUDA and OpenCL code that can potentially match
or exceed the performance of manually tuned GPU kernels.

To find a good set of transformations to apply to input
code on a given architecture, we use auto-tuning, a pro-
cess by which we optimize the code with several applicable
transformation configurations and then pick the optimized
version of the code with the best performance. Specifically,
we use auto-tuning with HMPP transformations to convert
programs written in sequential C code to generate paral-
lel CUDA / OpenCL code that gives improved performance
over the default HMPP configuration. In this work, we use
this approach to obtain optimized versions of 2D and 3D
convolution kernels, codes in the PolyBench [1] suite, and
an implementation of belief propagation for stereo vision.
The main contributions of this paper are: (1) showing that
auto-tuning applied to GPU kernels written in a directive-
based language can be used to effectively parallelize and op-
timize a variety of codes, in many cases meeting or exceeding
the performance of hand-written GPU programs, (2) show-
ing how particular transformations affect performance and
describing the best transformation configuration found for
each kernel, and (3) showing that the best transformations
are kernel and architecture specific.

We give a background of GPU computing in Section 2, de-
scribe directive-based programming and the HMPP Work-
bench in Section 3, discuss our experiment setup in Sec-
tion 4, show optimized HMPP results on 2D/3D convolu-
tion, PolyBench kernels, and belief propagation for stereo
vision in Section 5, describe related work in Section 6, and
discuss conclusions and future work in Section 7.

2. GPU COMPUTING
The graphics processing unit (GPU) has recently evolved

from specialized hardware to a powerful co-processor to the
CPU. The most powerful GPUs can perform more FLOPS



#pragma hmppcg un r o l l 2 , cont iguous
for ( i = 0 ; i < N; i++)
{

B[ i ] = A[ i ] ;
}

for ( i =0; i < N/2 ; i++)
{

B[2∗ i ] = A[2∗ i ] ;
B[2∗ i + 1 ] = A[2∗ i + 1 ] ;

}

(a) Transformation using ’contiguous’ unroll, the codelet on the left shows the code with pragma, and the codelet on the
right shows the resulting transformation.

#pragma hmppcg un r o l l 2 , s p l i t
for ( i =0; i < N; i++)
{

B[ i ] = A[ i ] ;
}

for ( i = 0 ; i < N/2 ; i++)
{

B[ i ] = A[ i ] ;
B[ i + N/2 ] = A[ i + N/ 2 ] ;

}

(b) Transformation using ’split’ unroll, the codelet on the left shows the code with pragma, and the codelet on the right
shows the resulting transformation.

#pragma hmppcg t i l e i : 2
for ( i =0; i < N; i++)
{

B[ i ] = A[ i ] ;
}

for ( i =0; i < N/2 ; i++)
{

for ( i 2 = 0 ; i 2 < 2 ; i 2++)
{

B[2∗ i + i 2 ] = A[2∗ i + i 2 ] ;
}

}

(c) Transformation using tiling, the codelet on the left shows the code with pragma, and the codelet on the right shows
the resulting transformation

Figure 1: Output code generated by transforming loop on left with HMPP pragmas for unrolling and tiling.

and have greater memory bandwidth than the most powerful
CPUs [28]. The development of the CUDA and OpenCL
programming environments allow the programmer to run
multiple threads in parallel to utilize the parallel processing
power of the GPU without the use of a graphics API.

In the CUDA / OpenCL environment, the parallel threads
are organized into 1D, 2D, or 3D structures called thread
blocks, and each thread block is placed in a 1D or 2D grid
of thread blocks. The number of threads in a thread block
is limited to a value determined by the particular GPU.
Threads within a thread block execute on the same GPU
multiprocessor as part of a 32-thread chunk known as a
warp, have access to a common space of fast, on-chip shared
memory, and can synchronize with each other.

The programming guide from NVIDIA [28] suggests var-
ious optimizations when programming on the GPU, includ-
ing adjusting the thread block size to increase multiprocessor
occupancy, using registers and shared memory rather than
high-latency global memory for data accesses, and organiz-
ing the threads in a way that favors coalesced global memory
accesses.

3. DIRECTIVE-BASED GPU PROGRAMMING
In this work, we use directive-based GPU programming

using the HMPP Workbench from CAPS Entreprise to gen-
erate GPU code and explore a large space of possible opti-
mizations. The HMPP compiler framework is shown in Fig-
ure 2. This tool allows the programmer to generate CUDA
/ OpenCL kernels from loops written in sequential C code
via pragmas placed before the kernel and in the command
to run the kernel [11]. A project to make HMPP directives
an open standard called OpenHMPP [8] is underway.

There are benefits to developing applications in a high-
level directive-based language as compared to developing in
low-level languages, such as OpenCL and CUDA. For exam-
ple, high-level languages preserve the serial implementation

of the code. The focus is on highlighting the parallelism in
the code as opposed to developing a platform-specific im-
plementation of the parallelism. A particular advantage of
a directive-based approach is that it eases the interaction
between domain scientists and programmers. However, pro-
gramming with high-level languages may mean a loss of per-
formance when compared to programming in low-level lan-
guages.

In addition to pragmas to specify parallelization, HMPP
provides pragmas to drive code transformations for opti-
mization. These include pragmas for loop permutation where
the loops are re-ordered, tiling / unrolling of loops at any
factor with varying parameters, and fusion / distribution of
computations in loops. Figure 1 shows the input and output
for tiling and loop unroll transformations using the ‘contigu-
ous’ and ‘split’ unroll schemas using factor 2. When using
the ‘contiguous’ option to unroll a loop that sequentially
steps through an array of size N, the array accesses in the
first iteration of the unrolled loop are to indices 0 and 1.
When using the ‘split’ unrolling schema, the accesses in the
first iteration are to indices 0 and N/2, which helps maintain
memory coalescence across threads. To determine the be-
havior of the remaining iterations that occur when the unroll
factor does not perfectly divide the array, HMPP provides
‘remainder’ and ‘guarded’ pragmas. The default ‘remainder’
option generates a remainder loop that is processed after the
unrolled loop, while the ‘guarded’ option inserts guards in
the unrolled loop so only the intended computations are run
in the final iteration.

In addition to CAPS, Cray and PGI offer directive-based
GPU programming. Also, the cuda-lite framework [38] shares
some similarities with the HMPP Workbench since both uti-
lize code annotations to simplify the process of optimizing
GPU code. However, the cuda-lite framework operates at
a lower level, with the annotations placed within a CUDA
kernel, while the pragmas in directive-based GPU program-



Figure 2: HMPP framework used for turning a se-
quential C program with specific pragmas to an op-
timized GPU program. (graphic courtesy of CAPS
Entreprise)

ming are placed in high-level sequential code.

4. EXPERIMENTAL SET-UP
Our experiments explore the use of HMPP code transfor-

mation pragmas to perform auto-tuning to optimize GPU
kernels written using directives in a high-level language. Us-
ing HMPP directives, we can perform auto-tuning on a large
optimization space on CUDA and OpenCL kernels. In this
work, we focus on loop permutation, loop unrolling, loop
tiling, and specifying which loops to parallelize.

We run the experiments on a cluster of nodes with NVIDIA
C2050 GPUs. This GPU is based on the GF100 (Fermi) ar-
chitecture. It contains 14 multiprocessors with 32 processors
each for a total of 448 parallel processors. Each multipro-
cessor contains 32768 registers and 64 KB which is split be-
tween shared memory and L1 cache. The programmer can
allocate 16 KB shared memory and 48 KB L1 cache or 48
KB shared memory and 16 KB L1 cache. In addition to the
GPUs, each node of our experimental setup contains two In-
tel 5530 Quad core Nehalem CPUs clocked at 2.4 GHz with
8 MB cache.

We start with optimizing 2D and 3D convolution kernels,
go on to optimize the codes in the PolyBench suite, and fi-
nally work on optimizing belief propagation for stereo vision.
In each of the codes, we apply ‘contiguous’ and ‘split’ loop
unrolling using the ‘remainder’ and ‘guarded’ options for the
remainder loop. We also explore tiling and permutation as
appropriate and look at which loops are best to parallelize.
The contiguous and split unrolling schemas along with the
tiling schema are described and shown in Section 3.

The transformed codes are generated using a python script
that contains a list of unroll, tiling, permutation, and par-
allelization transformations to use for a particular kernel.
Running the script generates and compiles codes with every

%(permutePragma)
%(unro l lTi l ePragma iLoop)
%(para l l e lNoPara l l e lPragma iLoop )
for ( i = 0 ; i < NI ; i++)
{

%(unro l lTi l ePragma jLoop)
%(para l l e lNoPara l l e lPragma jLoop )
for ( j = 0 ; j < NJ ; j++)

{
c [ i ] [ j ] ∗= p beta ;
%(unrol lTi lePragma kLoop )
%(para l l e lNoPara l l e lPragma kLoop)
for (k = 0 ; k < NK; k++)

{
temp = p alpha ∗ a [ i ] [ k ] ∗ b [ k ] [ j ] ;
c [ i ] [ j ] += temp ;

}
}

}

Figure 3: Framework for GEMM kernel in Poly-
Bench to insert transformations.

combination of input transformations. In order to generate
the annotated codes, the script uses a file with the source
for the code with specified locations to place each pragma
for code transformation. Figure 3 shows a portion of this file
for the PolyBench GEMM kernel. The code contains a place
to put a pragma to permute the loops as well as places to
insert pragmas for unrolling / tiling each loop and to specify
whether or not to parallelize each target loop. We go on to
run each transformed program to determine the best input
configuration.

The measured run-times include the running time of each
kernel and the overhead involved in calling the kernel (pos-
sibly multiple times) but not the time to transfer data from
the CPU to the GPU and vice versa. All the computations
used for auto-tuning are performed on 32-bit floating point
values and utilize thread block dimensions of 32 x 8 to allow
for full GPU multiprocessor occupancy.

5. EXPERIMENTAL RESULTS
In this section, we present our auto-tuning HMPP re-

sults on 2D convolution and 3D convolution, the PolyBench
benchmark suite, and belief propagation as applied to stereo
vision. In many of the results, the auto-tuned HMPP results
meet or exceed the performance of hand-written CUDA and
OpenCL versions of the codes.

5.1 2D Convolution

for ( int i = 0 ; i < DIM 0 − 1 ; i++)
for ( int j = 0 ; j < DIM 1 − 1 ; j++)

B[ i ] [ j ] =
C 11 ∗ A[ i −1] [ j−1]+C 12 ∗ A[ i +0] [ j −1] +
C 13 ∗ A[ i +1] [ j−1]+C 21 ∗ A[ i −1] [ j +0] +
C 22 ∗ A[ i +0] [ j+0]+C 23 ∗ A[ i +1] [ j +0] +
C 31 ∗ A[ i −1] [ j+1]+C 32 ∗ A[ i +0] [ j +1] +
C 33 ∗ A[ i +1] [ j +1] ;

Figure 4: 2D Convolution Kernel.

First, we look at optimizing the 2D convolution kernel
shown in Figure 4 using code transformations in HMPP. Our
experiments are performed using CUDA and OpenCL with
arrays of size 4096 x 4096. In our initial experiment, we re-
verse the loop order via permutation and find that the alter-



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 3 4 5 6 7 8

S
p

e
e
d

u
p

 o
v
e
r

d
e
fa

u
lt

 H
M

P
P

Contiguous Unroll Factor

Speedup using contiguous unroll

CUDA Speedup
OpenCL Speedup

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 3 4 5 6 7 8

S
p

e
e
d

u
p

 o
v
e
r

d
e
fa

u
lt

 H
M

P
P

Split Unroll Factor

Speedup using split unroll

CUDA Speedup
OpenCL Speedup

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 3 4 5 6 7 8

S
p

e
e
d

u
p

 o
v
e
r

d
e
fa

u
lt

 H
M

P
P

Tiling Factor

Speedup using tiling

CUDA Speedup
OpenCL Speedup

Figure 5: Speedup in 2DCONV using (from left to right) ‘contiguous’ unrolling, ‘split’ unrolling, and tiling
with factors 1-8 in the inner loop. The loops are in the initial order and outer loop is not unrolled.

nate loop order significantly increases the runtime, causing
us to keep the initial loop order. Also, experiments involv-
ing loop unrolling showed that using the ‘guarded’ option for
remainder behavior gave similar or better results than the
‘remainder’ option, causing us to use the ‘guarded’ option
in all ensuing experiments on this kernel.

Our next experiments look at tiling and unrolling the in-
ner loop at factors 1-8, using both the ‘contiguous’ and ‘split’
schemas for unrolling. The results for these experiments are
shown in Figure 5. The CUDA results show that applying
‘contiguous’ unrolling or tiling with factor 2 gives the best re-
sults, but the speedup corresponding to these schemas drops
off with larger factors while there continues to be a speedup
at larger factors in split unrolling. The pattern is a little
different in the OpenCL results. Applying ‘contiguous’ un-
roll or tiling with factor 2 gives some speedup, but the best
speedup occurs with an unroll factor of 8 using the ‘split’
schema.

The likely explanation for run-time improvement when
using a contiguous unroll or tiling factor of 2 is that the
convolution kernel is structured such that contiguous loop
unrolling / tiling allows particular data to be shared across
unrolled iterations, decreasing the number of memory ac-
cesses. However, contiguous unrolling weakens the capabil-
ity to perform coalesced memory accesses, particularly in
higher unroll factors. This causes a drop-off in performance
with higher unroll factors. Meanwhile, the ‘split’ unroll
schema does not provide data sharing between iterations,
but does allow the kernel to maintain coalesced memory ac-
cesses, preventing this performance drop-off.

The results of the best found configurations for this kernel
are also shown with results on other kernels in Figures 8 and
9 and described in Table 3.

5.2 3D Convolution
Next, we look into optimizing the 3D convolution kernel

shown in Figure 6 using 256 x 256 x 256 arrays.
Our initial experiments use each of the 6 possible loop

orderings via permutation without any tiling or unrolling.
Loop order can influence memory coalescence on the GPU,
and memory coalescence or lack of it can be a major factor
in the run-time of a GPU kernel. To simplify the discussion
of loop order, we refer to the outer ‘i’ loop as loop ‘1’, the
middle ‘j’ loop as loop ‘2’, and the inner ‘k’ loop as loop ‘3’.

In this kernel, there are three nested loops which can theo-
retically be parallelized, but HMPP only supports paralleliz-
ing up to two nested loops. By default, the first two loops
are parallelized, and a non-optimal loop permutation order
can lead to non-coalesced memory accesses and a longer run-
time.

for ( int i = 0 ; i < DIM 0 − 1 ; i++)
for ( int j = 0 ; j < DIM 1 − 1 ; j++)

for ( int k = 0 ; k < DIM 2 − 1 ; k++)
B[ i ] [ j ] [ k ] = C 11 ∗ A[ i −1] [ j −1] [ k−1]+

C 13 ∗ A[ i +1] [ j −1] [ k−1]+
C 21 ∗ A[ i −1] [ j −1] [ k−1]+
C 23 ∗ A[ i +1] [ j −1] [ k−1]+
C 31 ∗ A[ i −1] [ j −1] [ k−1]+
C 33 ∗ A[ i +1] [ j −1] [ k−1]+
C 12 ∗ A[ i +0] [ j −1] [ k+0]+
C 22 ∗ A[ i +0] [ j +0] [ k+0]+
C 11 ∗ A[ i −1] [ j −1] [ k+1]+
C 32 ∗ A[ i +0] [ j +1] [ k+0]+
C 13 ∗ A[ i +1] [ j −1] [ k+1]+
C 21 ∗ A[ i −1] [ j +0] [ k+1]+
C 23 ∗ A[ i +1] [ j +0] [ k+1]+
C 31 ∗ A[ i −1] [ j +1] [ k+1]+
C 33 ∗ A[ i +1] [ j +1] [ k+1] ;

Figure 6: 3D Convolution Kernel.
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Figure 7: Speedup over default HMPP in 3DCONV
using different permutations with default paral-
lelization and initial permutation with 2nd and 3rd
loops parallelized.

The results of our initial experiments are shown in Fig-
ure 7 and show a significant speedup over the default (1,2,3)
configuration in the permutations where the inner paral-
lelized loop is loop ‘3’ in the initial code.

Next, we keep the default (1,2,3) loop ordering and use an
alternate method to determine loop parallelization, inserting
pragmas to set the first loop to ‘noParallel’ and the subse-
quent two loops to ‘parallel’, causing the final two loops to be
parallelized while the first loop remains sequential. The run-
time of this configuration is shown alongside the results of
each permutation in Figure 7 and show that the CUDA and
OpenCL results using this configuration are slower than the
(1,3,2) and (2,3,1) permutations but faster than the other
permutations.

Additional experiments explore tiling and unrolling each



Pragma Experimental Parameter Values in
Codes

permute Depends on kernel. Different Ordering of
loops.

unroll Unroll factors 1 through 8 using ‘contigu-
ous’ and ‘split’ options.

tile Tiling factors 1 through 8.
parallel /
noParallel

Depends on kernel. Determines which
loops are parallelized for GPU processing.

remainder /
guarded

Used each option with loop unrolling. ‘Re-
mainder’ option allows generation of re-
mainder loop. The ‘guarded’ option avoids
this via guards in unrolled loop.

Table 1: Transformations applied to each input ker-
nel for optimization.

loop at various factors in the best permutations. In the
CUDA experiments, the speedup of the (1,3,2) permutation
goes from 21.2x to 27.2x when unrolling loop ‘3’ by a factor
of 4 using the ‘contiguous’ schema and ‘guarded’ remainder
option. This represents the best found CUDA speedup. In
the OpenCL experiments, the best found configuration uses
the (2,3,1) permutation without any unrolling or tiling. The
speedup of this configuration is 22x over the default. The re-
sults of these configurations are shown alongside other codes
in Figures 8 and 9 and described in Table 3.

5.3 The PolyBench Benchmark Suite
The PolyBench collection of benchmarks contains codes

for linear algebra, linear algebra solvers, data-mining, and
stencils, all with static control parts [1]. We convert a num-
ber of codes in this benchmark suite to CUDA / OpenCL
using HMPP pragmas. These codes are described in Table 2.
For the ATAX and BICG codes, we manually performed
loop distribution on the inner loop nests before running the
experiments to allow greater parallelism than in the initial
code structure. We will automate this process in future work
via the ‘distribute’ HMPP pragma.

In the current set of experiments, we look at permutation,
unrolling, tiling, and specifying which loop(s) to parallelize
with the parameters shown in Table 1. An exhaustive search
of all possible transformations within this space is not feasi-
ble, as many of these kernels contain a number of loops, so
a sampling of this space is utilized. No particular formula
determines the sampling as every kernel is different. We try
and include the transformations that will retrieve the best
results based on results of other kernels. In the future, we
may be able to improve results by doing a more exhaus-
tive ‘local search’ around the best optimizations found in
these experiments. The array dimensions used in our exper-
iments, running time of a sequential CPU implementation
using these dimensions, and number of HMPP-transformed
versions of each converted PolyBench code are given in Ta-
ble 2. Also, the cluster described in Section 4 is used for the
CPU running times.

We constructed hand-written CUDA and OpenCL kernels
to compare with the optimized HMPP results. These ker-
nels are tuned to maximize parallelism and coalescence of
memory accesses but are not heavily optimized. For these
initial experiments, we used 32-bit float data. The result-
ing speedup of the best HMPP-transformed version of these

codes over the default HMPP configuration and the hand-
coded results are in Figures 8 and 9 alongside the convolu-
tion results. The default HMPP and best found configura-
tion running times are shown in Table 2, and the best found
HMPP configuration for each code is described in Table 3.
The results show that both the CUDA and OpenCL default
HMPP configurations are faster than CPU implementations
on 12 of the 15 kernels, in many cases by a large margin. In
addition, the best found HMPP configurations from auto-
tuning beat the CPU result on all 15 kernels and are often
significantly faster than the default HMPP configuration.
Section 5.5 discusses these results in more detail.

Our hand-written GPU kernels as well as the default and
best found optimized HMPP-annotated codes are distributed
as the PolyBench/GPU 1.0 package, available at http://

www.cse.ohio-state.edu/~pouchet/software/polybench/

GPU.

5.4 Experiments Using Doubles
To see if we can generalize our auto-tuning results on 32-

bit floats to 64-bit doubles, we take the best transformations
found for floats and apply these transformations to the same
codes using doubles. We also ran manual implementations
of the kernels using doubles and normalized the results to
the running time of the default HMPP configuration using
doubles. The results when using doubles for CUDA and
OpenCL are shown on the right of Figures 8 and 9. These
results show that the configurations that give speedups on
floats also give speedups using doubles on most of the ker-
nels, though not always to the same extent. Specifically, the
geometric mean of the speedup using these configurations
over default HMPP on CUDA (OpenCL) is 2.73x (2.62x)
using floats and 2.24x (2.24x) using doubles.

5.5 HMPP Auto-Tuning Results Discussion
Figures 8 and 9 show results from our auto-tuning experi-

ments on convolution and PolyBench codes using HMPP on
a C2050 (Fermi) GPU. The running times of the sequential
CPU, default HMPP, and best found HMPP-transformed
configurations are given in Table 2. Each auto-tuned code
beats the performance of the default code produced by the
HMPP compiler, in some cases by a large margin. All the
auto-tuned HMPP CUDA codes beat the default HMPP
CUDA configuration by over 13 percent, with the speedup
ranging from 1.135x for the SYRK kernel to 49.7x for the
ATAX kernel. In addition, the average performance of the
auto-tuned kernels show a geometric mean speedup of 2.73x
compared with 2.02x using hand-written kernels. When run-
ning the best auto-tuned configuration using 64-bit doubles,
there continues to be a speedup in most of the codes. The
geometric mean of the speedup is 2.24x over default HMPP.

The results are similar using OpenCL, though some of
the speedups are lower, particularly on kernels where the
best found configuration involves loop unrolling. One pos-
sible explanation for this is that CUDA codes are compiled
with an Open64-based compiler in CUDA 4.0 while OpenCL
codes are compiled with an LLVM-based compiler. Thus,
the LLVM-based compiler may be doing a better job op-
timizing some of the non-transformed HMPP codes. Still,
auto-tuned HMPP targeting OpenCL gives a speedup over
default HMPP on many of the codes. The geometric mean
of the OpenCL speedup using the auto-tuned results is 2.62x
and 2.24x over default HMPP using floats and doubles, re-



Code Description Size of Ar-
ray Dimen-
sion(s)

Number
of Ver-
sions

CPU
Run-
time

CUDA Run-
time on
Fermi

OpenCL
Runtime on
Fermi

Default Best Default Best
2DCONV 2D Convolution 4096 198 0.160 0.00355 0.00277 0.00338 0.00294
2MM 2 Matrix Multiply (G=AxB) 2048 163 188 0.766 0.639 0.745 0.742
3DCONV 3D Convolution 256 137 0.360 0.202 0.00743 0.204 0.00926
3MM 3 Matrix Multiply (E=AxB;

F=CxD; G=ExF)
512 116 1.40 0.0165 0.0139 0.01580 0.01578

ATAX Matrix Transpose and Vector
Multiplication

4096 130 0.506 0.497 0.0100 0.587 0.00959

BICG BiCG Sub Kernel of BiCGStab
Linear Solver

4096 490 0.386 0.510 0.0184 0.608 0.0188

CORR Correlation Computation 2048 152 71 6.88 2.64 6.89 2.38
COVAR Covariance Computation 2048 145 70 6.92 2.50 6.91 2.35
FDTD-2D 2D Finite Difference Time Do-

main Kernel
2048 w/ 500
time-steps

177 24.5 1.17 1.02 0.886 0.876

GEMM Matrix Multiply C = αA x B +
βC

512 254 0.347 0.00601 0.00506 0.00549 0.00545

GESUMMV Scalar, Vector and Matrix Multi-
plication

4096 679 0.0321 0.0379 0.0241 0.0377 0.0254

GRAMSCHM Gram-Schmidt Process 2048 725 190 7.49 6.51 7.54 7.51
MVT Matrix Vector Product and

Transpose
4096 125 0.23 0.0190 0.00954 0.0189 0.00918

SYR2K Symmetric rank−2k operations 2048 178 22.8 15.70 12.81 15.70 12.92
SYRK Symmetric rank−k operations 1024 123 1.81 0.465 0.409 0.472 0.408

Table 2: Kernel description, size of each array dimension, number of HMPP-transformed versions generated,
and runtime (in seconds) of sequential CPU implementation and of default HMPP and best found HMPP-
transformed configurations on C2050 (Fermi) using floats on 2D/3D convolution and parallelized PolyBench
codes.

Code HMPP CUDA HMPP OpenCL
2DCONV Unroll 2nd loop using ‘contiguous’ and ‘guarded’ options

with factor 2
Unroll 2nd loop using ‘split’ and ‘guarded’ options with
factor 8

2MM Unroll 3rd and 6th loops using ‘split’ and ‘guarded’ option
w/ factor 3

Unroll 3rd and 6th loops using ‘split’ and ‘guarded’
options w/ factor 4

3DCONV Permute loop-nest order from (1,2,3) to (1,3,2); unroll loop
2 using ‘contiguous’ and ‘guarded’ options w/ factor 4

Permute loop-nest from (1,2,3) to (2,3,1) ordering

3MM Unroll 3rd, 6th, and 9th loops using ‘split’ and ‘guarded’
options w/ factor 3

Unroll 3rd, 6th, and 9th loops using ‘contiguous’ and
‘guarded’ options with factor 8

ATAX Reverse order of 2nd nested loop set (4th and 5th loops)
using permutation and tile 1st and 2nd loop w/ factor 4

Reverse order of 2nd nested loop set (4rd and 5th loops)
using permutation and tile 1st and 2nd loops w/ factor
2

BICG Reverse order of 1st loop set (2rd and 3rd loops) and tile
2nd, 3rd, 4th, and 5th loops w/ factor 2

Reverse order of first loop set (2rd and 3rd loops) and
tile 2nd loop w/ factor 4

CORR Parallelize 8th loop rather than 7th loop using noParallel/-
parallel pragmas and tile 9th loop w/ factor 4

Parallelize 8th loop rather than 7th loop using noPar-
allel/parallel pragmas and unroll 9th loop using ‘con-
tiguous’ and ‘remainder’ options w/ factor 2

COVAR Parallelize 6th loop rather than 5th loop using noParal-
lel/parallel pragmas and unroll 7th loop using ‘split’ and
‘guarded’ options w/ factor 4

Parallelize 6th loop rather than 5th loop using noPar-
allel/parallel pragmas

FDTD-2D Unroll 4th loop w/ factor 2 and 8th loop with factor 4, each
using ‘split’ and ‘guarded’ options

Unroll 4th and 8th loops using ‘split’ and ‘remainder’
options w/ factor 2

GEMM Unroll 3rd loop using ‘split’ and ‘guarded’ options with
factor 3

Unroll 3rd loop using ‘contiguous’ and ‘guarded’ op-
tions with factor 8

GESUMMV Tile 1st loop w/ factor 4 and tile 2nd loop w/ factor 2 Tile 1st loop w/ factor 4 and tile 2nd loop w/ factor 3
GRAMSCHM Unroll 5th and 6th loops using ‘split’ and ‘guarded’ options

w/ factor 3
Unroll 5th and 6th loops using ‘contiguous’ and
‘guarded’ options w/ factor 4

MVT Tile 1st, 2nd, and 4th loops w/ factor 2 Tile 1st loop w/ factor 2
SYR2K Unroll 5th loop using ‘split’ and ‘remainder’ options with

factor 3
Unroll 2nd loop using ‘split’ and ‘guarded’ options with
factor 2 and 5th loop using ‘split’ and ‘guarded’ options
with factor 4

SYRK Unroll 5th loop using ‘split’ and ‘guarded’ options with
factor 2

Unroll 2nd and 5th loops using ‘split’ and ‘remainder’
options with factor 2

Table 3: Best found transformations on C2050 (Fermi) for convolution and PolyBench kernels
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Figure 8: Speedup of auto-tuned HMPP-generated CUDA kernels and hand-written CUDA codes over default
HMPP CUDA on 2D/3D convolution and PolyBench codes using single and double precision.
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Figure 9: Speedup of auto-tuned HMPP-generated OpenCL kernels and hand-written OpenCL codes over
default HMPP OpenCL on 2D/3D convolution and PolyBench codes using single and double precision.

spectively.
The results in Table 3 show some pattern of what trans-

formations should be applied. It is important to use the best
loop permutation to maximize memory coalescence. For ex-
ample, we get a speedup of over 20x compared to the default
on the 3DCONV, ATAX, and BICG kernels by using per-
mutation. The programmer should consider what loops are
parallelized because the default configuration may not be
optimal. In the CORR and COVAR kernels, we get over
2.5x speedup by specifying loops to parallelize. For loop un-
rolling, the results show that applying unrolling to the inner-
most loop in a loop nest often gives the best speedup. In the
2DCONV, 2MM, 3MM, GEMM, SYR2K, and SYRK ker-
nels, the best configuration on CUDA and OpenCL involve
loop unrolling on the inner loop in particular loop nest(s).

Still, the best found transformations vary across kernels
and programming environments, showing a need to experi-
ment with different optimizations and parameter values due
to different characteristics of each kernel and programming
environment.

5.6 Experiments With Different Architectures
We go on to explore how the best found optimization con-

figurations can vary across GPU architectures. We take
the best found CUDA HMPP optimization configuration
for each kernel on the C2050 (Fermi) GPU and run them
on the NVIDIA GTX 280 (Tesla), which uses the GT200
architecture and has 240 cores, and the NVIDIA 9800GT,
which uses the G92 architecture and has 112 cores. The re-
sulting runtime is compared with the running time of the
best CUDA HMPP configuration found using auto-tuning

on each architecture. The results for each kernel are shown
in Figure 10.

Some of the configurations that worked well on the Fermi
did not perform as well on the Tesla or 9800 GT. Using the
best found transformed kernels on the Fermi and running
them on the Tesla or 9800 GT resulted in a slowdown com-
pared to the default HMPP configuration on 4 out of the 15
kernels on the Tesla and 5 of the 15 kernels on the 9800 GT.
Still, some of the best optimization configurations, partic-
ularly permutation and parallelization of particular loops,
did result in speedups across all architectures. For example,
in the cases where permutation or parallelization is used
in the best found optimization configuration on the Fermi,
those configurations also result in a speedup over the default
HMPP on the Tesla and 9800 GT GPU architectures. Still,
the best optimization configuration found on a specific tar-
get architecture, T1, is often significantly faster than using
the best configuration from an alternate architecture, T2,
and using it on T1. On the left of Figure 10, the geomet-
ric mean speedup over the default HMPP configuration for
all the kernels on the ‘Best Fermi on Tesla’ configurations
is 1.69x while the speedup of the auto-tuned ‘Best Tesla’
is 2.39x. On the right of Figure 10, the geometric mean of
the speedup of the ‘Best Fermi on 9800GT’ configurations
is 1.34x while the speedup of the auto-tuned ‘Best 9800GT’
is 1.71x. These results show that the best transformations
are not only specific to the kernel, but seem to be specific
to the GPU architecture.

5.7 Optimizing Belief Propagation
We go on to use HMPP to optimize belief propagation
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Figure 10: Left: Results of running best CUDA HMPP transformations found on C2050 (Fermi) on GTX
280 (Tesla) vs. best configurations found using auto-tuning on GTX 280 (Tesla); Right: Results of running
best CUDA HMPP transformations found on C2050 (Fermi) on 9800 GT vs. best configurations found using
auto-tuning on 9800 GT.

Figure 11: Reference image in Tsukuba stereo set
and ground-truth disparity map.

as applied to stereo vision. The input to the algorithm is
a stereo set of two images, and the output is a computed
disparity map between the images. In Figure 11, we show
an image in the Tsukuba stereo set used in our experiments
and the corresponding ground-truth disparity map.

We begin with the sequential code corresponding to the
work by Felzenszwalb [12] available online. We adjust the
implementation to maximize the number of coalesced mem-
ory accesses and add HMPP pragmas to run the program on
the GPU. Each step of the algorithm is parallelized, as the
computations in every step can be performed on each image
pixel simultaneously. We profile the default parallel HMPP
implementation and find that an iterative ‘message-passing’
step dominates the runtime, so we focus on optimizing that
step. The targeted code repeats for a given number of iter-
ations and consists of message values corresponding to each
disparity at each pixel being passed to neighbors and up-
dated. Additional details about each step of the algorithm
can be found in Felzenszwalb’s work.

Our experiments use the Tsukuba stereo set with image
dimensions of 384 x 288 and 15 possible disparity levels. The
implementation is run using a single level with 250 message-
passing iterations, with the optimized implementation de-
termined in the same manner as in Section 5.3 using the
transformations shown in Table 1. The CUDA and OpenCL
results of the initial and best optimized HMPP implementa-
tions are in Figure 12 alongside results of a manual CUDA
implementation developed by Grauer-Gray et al. [15]. The
speedup is relative to the initial sequential CPU implemen-
tation. Each CUDA and OpenCL implementation performs
at least seven times faster than the CPU implementation,
with the optimized HMPP implementation giving a greater
speedup. In the CUDA results, the manual implementa-
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Figure 12: Speedup over sequential implementation
of default and optimized HMPP belief propagation
on CUDA and OpenCL and of manual implementa-
tion on CUDA.

tion performs better than default HMPP but worse than
our optimized HMPP implementation, showing how HMPP
optimizations can improve the performance of a program to
outperform a manual GPU implementation.

6. RELATED WORK
There are a number of library generators that automati-

cally produce high-performance kernels, including FFT [13,
29, 36], BLAS [34, 37, 5, 14, 16], Sparse Numerical Com-
putation [19, 33, 26, 4, 23], and domain specific routines [3,
7, 24]. Recent research [21, 22, 17] expands automatic code
generation to routines whose performance depends not only
on architectural features, but also on input characteristics.
These systems are a step toward automatically optimizing
code for different architectures. However, these prior works
have been largely focused on small domain-specific kernels.

Automatic code generation and optimization for different
architectures has been explored in many studies. The re-
search related to loop optimizations includes work by Wolf
et al. [35], Kisuki et al. [20], and Stephenson et al. [32] that
look at such optimizations on the CPU. Wolf et al. looked
at how to best combine particular transformations on the
architecture, Kisuki et al. focused on retrieving the optimal
tiling size and unroll factor simultaneously, while Stephen-
son et al. used supervised learning to predict the optimal
unroll factor of any loop. These works focused on optimiz-
ing for single-core CPUs. In our work, we optimize codes
for many-core GPU architectures.



There is also related work on GPU code optimization by
Ryoo et al. [31]. They looked at a number of manual op-
timizations of CUDA kernels, including tiling, pre-fetching,
and full loop unrolling within CUDA kernels. Liu et al. [25]
looked at varying thread block dimensions and loop un-
rolling as optimizations in CUDA kernels. Baskaran et al. [2]
did an extensive study of loop unrolling within CUDA ker-
nels, but they were concerned with improving the perfor-
mance of a single application.

Choi et al. [6] developed an auto-tuning framework for
sparse matrix-vector multiplication on the GPU. Nukada
et al. [27] optimized 3D-FFT of varying transform sizes on
GPUs using auto-tuning. These two related works applied
auto-tuning to specific applications.

Another related work is the CUDA-CHILL project [30],
which can translate loop nests to high performance CUDA
code. The developers of this project provide a programming
language interface that uses an embedded scripting language
to express transformations or recipes. Their work only sup-
ports CUDA transformations and it is necessary to program
the script, which is not as convenient as using a directive-
based approach like HMPP.

Cui et al. ([10] and [9]) introduced the EPOD framework
built on Open64 that can encapsulate algorithm-specific op-
timizations into patterns, and these patterns can be reused
in other similar codes. It targets multiple platforms includ-
ing multi-core CPUs and NVIDIA GPUs. One of the works
is focused on generating optimization scripts for BLAS3
GPU kernels. Our work differs because it uses a directive-
based tool where the transformations are placed in program
code rather than an outside script and also shows results for
specific transformations and on a greater variety of codes.

Our work differs from much of the previous GPU work
because it does not require analysis and transformations us-
ing initial GPU kernels, instead utilizing directives placed
in C code to apply the optimizations and generate the ker-
nels. In addition, this work focuses on transformations at a
higher level than presented in the related work, looking at
transformations of the loop(s) to be parallelized rather than
loops within the kernel.

7. CONCLUSIONS AND FUTURE WORK
The problem of determining the best set of optimizations

to apply to a kernel to be executed on a GPU has been exten-
sively studied. In this work, we developed optimized GPU
kernels using auto-tuning with the directive-based HMPP
Workbench. We found that we were able to significantly
improve the running time over the default HMPP imple-
mentation as well as match or even exceed the performance
of manually written CUDA / OpenCL code on kernels in the
PolyBench suite and on the belief propagation application as
applied to stereo vision. Using code transformations avail-
able in HMPP, we were able to quickly generate different
versions of code spanning a large space of optimizations.

In the future, we plan to extend this work by looking at
more large applications and more optimizations, including
distribution / fusion. We also plan to experiment with ad-
ditional GPU architectures, including AMD GPUs, as well
as other many-core architectures.
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